МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ АДМИНИСТРАЦИЯ ГОРОДА НИЖНЕГО НОВГОРОДА ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ

МАОУ "Школа № 118 с углублённым изучением отдельных предметов"

РАССМОТРЕНО	СОГЛАСОВАНО	УТВЕРЖДЕНО
на школьном методическом объединении	на школьном методическом совете	на педагогическом совете
Смирнов Р.Н. Протокол №1 от «28» 08 2024 г.	Баринова О.В. Протокол №1 от «28» 08 2024 г.	Жукова Н.Н. Протокол №11 от «29» 08 2024 г.

РАБОЧАЯ ПРОГРАММА

(ID 5169953)

Элективного курса "Ядерная физика"

для обучающихся 10-11 классов

Нижний Новгород 2024

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Элективный курс «Ядерная физика» предназначен учащимся старшей школы, выбравшим естественно-научный, физико-математический профили или проявившим повышенный интерес к изучению физики, химии, биологии, экологии. Данный курс интегрированный, он связан содержательно с курсом физики и математики основной школы. Изучение предлагаемого элективного курса направлено на углубление и обобщение знаний школьников о современной картине мира, основанной на квантовой механике и специальной теории относительности. Именно эти разделы современной физики позволили понять суть структуры материи и использовать эти знания для создания ядерной энергетики, современной квантовой электроники, разработать эффективные методы диагностики и лечения различных заболеваний, сделать много других важных открытий.

Несмотря на то, что отдельные вопросы квантовой и ядерной физики и специальной теории относительности изучают в школьном курсе физики, представленной в них информации недостаточно для того, чтобы в должной мере оценить и понять суть происходящих процессов. Полная картина возникает только тогда, когда ядерная физика воспринимается как часть Стандартной модели, в которой интегрированно рассматриваются процессы, происходящие на уровне элементарных частиц, отвечающие за электромагнитные, сильные и слабые взаимодействия, и процессы, происходившие на ранних стадиях развития Вселенной и затем в процессах эволюции звёзд.

Ядерная физика — наука экспериментальная. Методы и приборы ДЛЯ фундаментальных исследований в современной ядерной физике основаны на использовании высоких технологий и нестандартных инженерных решений. значительной степени это относится и к прикладным исследованиям с применением ядерно-физических методов в радиационной биологии, экологии, химии и медицине. Это продемонстрировано в различных разделах элективного курса на примерах моделей самого современного экспериментального оборудования для фундаментальных и прикладных исследований (циклотрон и установка для синтеза сверхтяжёлых элементов, сверхпроводящий ядерный коллайдер и многоцелевой детектор, импульсный реактор нейтронов, глубоководный детектор для изучения физики нейтрино, ускорительный комплекс для протонной терапии).

Рабочая программа элективного курса по физике в 10-11 классах составлена на основе «Программы элективного курса», автор: Ю.А. Панебратцев, Сборник примерных рабочих программ. Элективные курсы для профильной школы: учеб. пособие для общеобразоват. организаций /[H. B. Антипова и др.]. — М.: Просвещение, 2019. — 187 с.(Профильная школа).

ОБЩАЯ ХАРАКТЕРИСТИКА ЭЛЕКТИВНОГО КУРСА

Предлагаемый элективный курс посвящён рассмотрению таких тем, как элементы квантовой механики и теории относительности в применении к атомной и ядерной физике, различные виды радиоактивности, в том числе и спонтанное деление ядер, свойства и модели атомных ядер, традиционные ядерные реакции и ядерные реакции при энергиях коллайдеров. Рассмотрено происхождение элементов во Вселенной и синтез новых сверхтяжёлых элементов в лабораториях учёных. Часть разделов посвящена ядерной энергетике и прикладным исследованиям в области радиационной биологии, экологии и применению методов ядерной физики в медицине. Значительная часть элективного курса отведена практическим работам, большая часть которых имеет исследовательский характер.

ЦЕЛИ ИЗУЧЕНИЯ ЭЛЕКТИВНОГО КУРСА

Цель курса: расширение, углубление и обобщение знаний о физических процессах в области ядерной физики, причинах и механизмах их протекания, развитие познавательных интересов и творческих способностей учащихся через практическую направленность обучения физике и интегрирующую роль физики в системе естественных наук.

Задачи курса:

- развитие естественно-научного мировоззрения учащихся;
- развитие приёмов умственной деятельности, познавательных интересов, склонностей и способностей учащихся;
- развитие мотивации учения, формирование потребности в получении новых знаний и применении их на практике;
- расширение, углубление и обобщение знаний по физике, химии, биологии;
- использование межпредметных связей физики с математикой, биологией, химией, историей, экологией, рассмотрение значения этого курса для успешного освоения смежных дисциплин;
- совершенствование экспериментальных умений и навыков в соответствии с требованиями правил техники безопасности;
- рассмотрение связи ядерной физики с жизнью, с важнейшими сферами деятельности человека;
- развитие у учащихся умения самостоятельно работать с дополнительной литературой и другими средствами информации;
- формирование у учащихся умений анализировать, сопоставлять, применять теоретические знания на практике;
- формирование умений по решению экспериментальных и теоретических задач.

Основные идеи курса:

- единство материального мира;
- внутри- и межпредметная интеграция;
- взаимосвязь науки и практики;
- взаимосвязь человека и окружающей среды

МЕСТО ЭЛЕКТИВНОГО КУРСА В УЧЕБНОМ ПЛАНЕ

Курс рассчитан на 1 год обучения – 10класс. Количество часов на год по программе: 68. Количество часов в неделю: 2 часа, что соответствует школьному учебному плану.

СОДЕРЖАНИЕ ЭЛЕКТИВНОГО КУРСА

10 КЛАСС

Введение(2 ч)

Излучение абсолютно чёрного тела и квантовая гипотеза Планка, открытие Дж. Дж. Томсоном электрона. Открытие рентгеновского излучения. Открытие А. А. Беккерелем радиоактивности. Опыты Пьера и Марии Кюри. Создание А. Эйнштейном специальной теории относительности. Взаимосвязь между массой и энергией. Главная формула XX в.: $E = mc^2$.

Эксперимент Э. Резерфорда по открытию «планетарной» модели атомного ядра. Квантование энергии и модель Н. Бора.

Последствия этих открытий для создания квантовой механики и ядерной физики как основы технического прогресса человечества в XX и XXI вв., создания картины микро- и макрокосмоса на основе Стандартной модели

Тема 1. Квантовый мир атомов и молекул (3 ч)

Модель атома Бора и линейчатые спектры. Квантование энергии. Волны материи Л. де Бройля. Корпускулярно-волновой дуализм. Дифракция электронов на кристаллах. Фотоэффект и эффект Комптона. Принцип неопределённости Гейзенберга. Уравнение Шредингера. Волновая функция и её вероятностная интерпретация. Квантовый эффект туннелирования.

Квантование углового момента. Спин электрона. Принцип запрета Паули. Электронные оболочки атомов и Периодический закон Менделеева.

Молекулы. Спектры атомов и молекул.

Тема 2. Масса и энергия в релятивистской теории (4 ч)

Основные постулаты специальной теории относительности. Преобразования Галилея и Лоренца. Инвариантность интервала.

Масса в классической механике и теории относительности. Преобразования Лоренца для импульса и энергии. Масса — релятивистский инвариант. Связь энергии и массы покоя $E=mc^2$. Примеры перехода массы в энергию и энергии в массу. Дефект массы и энергия связи ядер. Массы и энергия составных систем. Релятивистская кинематика и законы сохранения энергии и импульса.

Тема 3. Атомные ядра и радиоактивность (4 ч)

Основные свойства атомных ядер: состав, размер, форма, заряд, масса ядра, энергия связи. Изотопы. Границы стабильности атомных ядер. Спин протона и нейтрона. Угловой момент ядра.

Ядерные силы. Классическая протон-нейтронная модель ядра. Ядерные модели: фермигаз, капельная, оболочечная и обобщённая модель ядра.

Короткодействующие нуклонные корреляции в ядрах и кумулятивный ядерный эффект.

Радиоактивность. Виды радиоактивности: а-, b-, g-распад, спонтанное деление.

Границы стабильности атомных ядер. Закон радиоактивного распада. Период полураспада. Активность радиоактивного источника.

Качественные и расчётные задачи.

Математический практикум «Статистический характер радиоактивного распада».

Тема 4. Ядерные реакции (2 ч)

Ядерные превращения в экспериментах Резерфорда. Открытие протона и нейтрона. Реакции деления ядер. Цепная ядерная реакция. Термоядерные реакции. Подпороговые реакции. Рождение антипротонов. Изучение структуры протонов и ядер в пучках электронов.

Качественные и расчётные задачи.

Тема 5. Происхождение элементов во Вселенной (4 ч)

Фундаментальные взаимодействия. Стандартная модель. Большой взрыв. Атомы водорода и легчайших элементов. Синтез элементов в звёздах. Взрывы сверхновых звёзд и нейтронные звёзды.

Тема 6. Синтез новых сверхтяжёлых элементов (2 ч)

Трансурановые и трансфермиевые элементы. «Остров стабильности» и синтез новых сверхтяжёлых элементов. Лаборатория ядерных реакций имени академика Г. Н. Флёрова. Модель циклотрона и детектора для регистрации сверхтяжёлых элементов. Как регистрируют сверхтяжёлые элементы.

Тема 7. Ускорители и коллайдеры (4 ч)

Принципы работы линейных и циклических ускорителей. Движение заряженных частиц в электрическом и магнитном поле. В. И. Векслер: принцип автофазировки. А. М. Будкер: идея электронного охлаждения и первые встречные кольца. Большой адронный коллайдер (LHC) в Европе и коллайдер релятивистских ядер (RHIC). Модель ускорительного комплекса НИКА — российского коллайдера тяжёлых ионов.

Тема 8. Исследование столкновений релятивистских ядер (3 ч)

Что происходит при столкновениях релятивистских ядер. Детекторы для регистрации продуктов ядерных реакций. Основные характеристики реакций. Триггер для отбора событий. Время-проекционная камера. Электромагнитный калориметр, силиконовые детекторы для определения вершины взаимодействия.

Тема 9. Ядерная энергетика и глобальные проблемы человечества (3 ч)

Ядерная энергетика и глобальные проблемы человечества. Ядерные реакторы. Природные ядерные реакторы.

Решение качественных и расчётных задач.

Интерактивная модель ядерного реактора.

Тема 10. Ядерная физика и медицина (3 ч)

Ядерная физика и медицина. Модель ускорительного комплекса для протонной радиотерапии.

Тема 11. Ядерная физика с нейтронами (3 ч)

Ядерные исследования с нейтронами. Свойства нейтронных пучков. Модель исследовательского импульсного реактора на быстрых нейтронах ИБР-2. Применение нейтронного активационного анализа в экологии. Ядерная планетология. Поиск воды на Марсе при помощи источника нейтронов.

Тема 12. Радиобиология (3 ч)

Что изучает радиобиология. Состав космического излучения и его воздействие на живые организмы. Пилотируемые полёты в космос и радиационные риски. Астробиология. *Моделирование радиационных повреждений клеток в среде GEANT*.

Тема 13. Взаимодействие излучения с веществом (3 ч)

Взаимодействие заряженных частиц, фотонов и электронов с веществом.

Тема 14. Детекторы заряженных частиц и гамма-квантов (3 ч)

Различные типы детекторов: газовый, фотоэмульсии, пузырьковая камера, сцинтилляционный, полупроводниковый, детектор на основе микроканальных пластин. Съём сигнала с детектора. Энергетические и время-пролётные спектры. Современные методы съёма и оцифровки информации.

Тема 15. Виртуальная лаборатория «Основы измерения сигналов с детекторов» (4 ч)

Тема 16. Виртуальная лаборатория «Сцинтилляционный телескоп для изучения космических лучей» (4 ч)

Тема 17. Виртуальная лаборатория гамма-спектроскопии (4 ч)

Тема 18. Виртуальная лаборатория спонтанного деления ядер (4 ч)

Тема 19. Математический практикум по обработке результатов измерений в среде ROOT (4 ч)

Тема 20. Математический практикум по моделированию радиационных повреждений клетки в среде GEANT (4 ч)

ПЛАНИРУЕМЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕЗУЛЬТАТЫ

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Личностные результаты освоения элективного курса должны отражать готовность и способность обучающихся руководствоваться сформированной внутренней позицией личности, системой ценностных ориентаций, позитивных внутренних убеждений, соответствующих традиционным ценностям российского общества, расширение жизненного опыта и опыта деятельности в процессе реализации основных направлений воспитательной деятельности, в том числе в части:

1) гражданского воспитания:

сформированность гражданской позиции обучающегося как активного и ответственного члена российского общества;

принятие традиционных общечеловеческих гуманистических и демократических ценностей;

готовность вести совместную деятельность в интересах гражданского общества, участвовать в самоуправлении в образовательной организации;

умение взаимодействовать с социальными институтами в соответствии с их функциями и назначением;

готовность к гуманитарной и волонтёрской деятельности;

2) патриотического воспитания:

сформированность российской гражданской идентичности, патриотизма;

ценностное отношение к государственным символам, достижениям российских учёных в области физики и технике;

3) духовно-нравственного воспитания:

сформированность нравственного сознания, этического поведения;

способность оценивать ситуацию и принимать осознанные решения, ориентируясь на морально-нравственные нормы и ценности, в том числе в деятельности учёного;

осознание личного вклада в построение устойчивого будущего;

4) эстетического воспитания:

эстетическое отношение к миру, включая эстетику научного творчества, присущего физической науке;

5) трудового воспитания:

интерес к различным сферам профессиональной деятельности, в том числе связанным с физикой и техникой, умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы;

готовность и способность к образованию и самообразованию в области физики на протяжении всей жизни;

6) экологического воспитания:

сформированность экологической культуры, осознание глобального характера экологических проблем;

планирование и осуществление действий в окружающей среде на основе знания целей устойчивого развития человечества;

Расширение опыта деятельности экологической направленности на основе

имеющихся знаний по физике;

7) ценности научного познания:

сформированность мировоззрения, соответствующего современному уровню развития физической науки;

осознание ценности научной деятельности, готовность в процессе изучения физики осуществлять проектную и исследовательскую деятельность индивидуально и в группе.

В процессе достижения личностных результатов освоения программы элективного курса у обучающихся совершенствуется эмоциональный интеллект, предполагающий сформированность:

самосознания, включающего способность понимать своё эмоциональное состояние, видеть направления развития собственной эмоциональной сферы, быть уверенным в себе;

саморегулирования, включающего самоконтроль, умение принимать ответственность за своё поведение, способность адаптироваться к эмоциональным изменениям и проявлять гибкость, быть открытым новому;

внутренней мотивации, включающей стремление к достижению цели и успеху, оптимизм, инициативность, умение действовать, исходя из своих возможностей;

эмпатии, включающей способность понимать эмоциональное состояние других, учитывать его при осуществлении общения, способность к сочувствию и сопереживанию;

социальных навыков, включающих способность выстраивать отношения с другими людьми, заботиться, проявлять интерес и разрешать конфликты.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Метапредметные результаты освоения программы должны отражать:

Овладение универсальными познавательными действиями:

1) базовые логические действия:

самостоятельно формулировать и актуализировать проблему, рассматривать её всесторонне;

определять цели деятельности, задавать параметры и критерии их достижения;

выявлять закономерности и противоречия в рассматриваемых физических явлениях;

разрабатывать план решения проблемы с учётом анализа имеющихся материальных и нематериальных ресурсов;

вносить коррективы в деятельность, оценивать соответствие результатов целям, оценивать риски последствий деятельности;

координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;

развивать креативное мышление при решении жизненных проблем.

2) базовые исследовательские действия:

владеть научной терминологией, ключевыми понятиями и методами физической науки; владеть навыками учебно-исследовательской и проектной деятельности в области физики, способностью и готовностью к самостоятельному поиску методов решения задач физического содержания, применению различных методов познания;

осуществлять различные виды деятельности по получению нового знания, его интерпретации, преобразованию и применению в различных учебных ситуациях, в том числе при создании учебных проектов в области физики;

выявлять причинно-следственные связи и актуализировать задачу, выдвигать гипотезу её решения, находить аргументы для доказательства своих утверждений, задавать параметры и критерии решения;

анализировать полученные в ходе решения задачи результаты, критически оценивать их достоверность, прогнозировать изменение в новых условиях;

ставить и формулировать собственные задачи в образовательной деятельности, в том числе при изучении физики;

давать оценку новым ситуациям, оценивать приобретённый опыт;

уметь переносить знания по физике в практическую область жизнедеятельности;

уметь интегрировать знания из разных предметных областей;

выдвигать новые идеи, предлагать оригинальные подходы и решения;

ставить проблемы и задачи, допускающие альтернативные решения.

3) работа с информацией:

владеть навыками получения информации физического содержания из источников разных типов, самостоятельно осуществлять поиск, анализ, систематизацию и интерпретацию информации различных видов и форм представления;

оценивать достоверность информации;

использовать средства информационных и коммуникационных технологий в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;

создавать тексты физического содержания в различных форматах с учётом назначения информации и целевой аудитории, выбирая оптимальную форму представления и визуализации.

Овладение универсальными коммуникативными действиями:

1) общение:

осуществлять общение на уроках физики и во вне-урочной деятельности;

распознавать предпосылки конфликтных ситуаций и смягчать конфликты;

развёрнуто и логично излагать свою точку зрения с использованием языковых средств;

2) совместная деятельность:

понимать и использовать преимущества командной и индивидуальной работы;

выбирать тематику и методы совместных действий с учётом общих интересов, и возможностей каждого члена коллектива;

принимать цели совместной деятельности, организовывать и координировать действия по её достижению: составлять план действий, распределять роли с учётом мнений участников, обсуждать результаты совместной работы;

оценивать качество своего вклада и каждого участника команды в общий результат по разработанным критериям;

предлагать новые проекты, оценивать идеи с позиции новизны, оригинальности, практической значимости;

осуществлять позитивное стратегическое поведение в различных ситуациях, проявлять творчество и воображение, быть инициативным.

Овладение универсальными регулятивными действиями:

1) самоорганизация:

самостоятельно осуществлять познавательную деятельность в области физики и астрономии, выявлять проблемы, ставить и формулировать собственные задачи;

самостоятельно составлять план решения расчётных и качественных задач, план выполнения практической работы с учётом имеющихся ресурсов, собственных возможностей и предпочтений;

давать оценку новым ситуациям;

расширять рамки учебного предмета на основе личных предпочтений;

делать осознанный выбор, аргументировать его, брать на себя ответственность за решение;

оценивать приобретённый опыт;

способствовать формированию и проявлению эрудиции в области физики, постоянно повышать свой образовательный и культурный уровень;

2) самоконтроль:

давать оценку новым ситуациям, вносить коррективы в деятельность, оценивать соответствие результатов целям;

владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований;

использовать приёмы рефлексии для оценки ситуации, выбора верного решения;

оценивать риски и своевременно принимать решения по их снижению;

принимать мотивы и аргументы других при анализе результатов деятельности;

3) принятие себя и других:

принимать себя, понимая свои недостатки и достоинства;

принимать мотивы и аргументы других при анализе результатов деятельности; признавать своё право и право других на ошибку.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

10 КЛАСС

В результате изучения элективного курса на уровне среднего общего образования у учащихся будут сформированы следующие предметные результаты.

Учащийся научится:

- раскрывать на примерах роль ядерной физики в формировании современной научной картины мира и в практической деятельности человека, взаимосвязь между физикой и другими естественными науками;
- объяснять и анализировать роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологии, в практической деятельности людей;
- характеризовать взаимосвязь между физикой и другими естественными науками;
- понимать и объяснять целостность физической теории, различать границы её применимости и место в ряду других физических теорий;
- владеть приёмами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- самостоятельно планировать и проводить физические эксперименты;

- решать практико-ориентированные качественные и расчётные физические задачи с опорой как на известные физические законы, закономерности и модели, так и на тексты с избыточной информацией;
- объяснять границы применения изученных физических моделей при решении физических и межпредметных задач;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов; объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной в задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.

Учащийся получит возможность научиться:

- описывать и анализировать полученную в результате проведённых физических экспериментов информацию, определять её достоверность;
- понимать и объяснять системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- решать экспериментальные, качественные и количественные задачи олимпиадного уровня сложности, используя физические законы, а также уравнения, связывающие физические величины;
- анализировать границы применимости физических законов, понимать всеобщий характер фундаментальных законов и ограниченность использования частных законов;
- формулировать и решать новые задачи, возникающие в ходе учебно-исследовательской и проектной деятельности;
- усовершенствовать приборы и методы исследования в соответствии с поставленной задачей;
- использовать методы математического моделирования, в том числе простейшие статистические методы, для обработки результатов эксперимента.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 10 КЛАСС

No	Содержание обучения	всего	Количество учебных занятий	
п/п	Содержание обучения	BCCIU	теоретических	практических
	10 класс			
1.	Введение	2	2	2
2.	Квантовый мир атомов и молекул	3	3	3
3.	Масса и энергия в релятивистской теории	4	2	2
4.	Атомные ядра и радиоактивность	4	3	1
5.	Ядерные реакции	2	1	1
6.	Происхождение элементов во Вселенной	4	2	2
7.	Синтез новых сверхтяжёлых элементов	2	2	2
8.	Ускорители и коллайдеры	4	4	4

9.	Исследование столкновений релятивистских ядер	3	3	3
10.	Ядерная энергетика и глобальные проблемы человечества	3	2	1
11.	Ядерная физика и медицина	3	2	1
12.	Ядерная физика с нейтронами	3		
13.	Радиобиология	я 3 3		
14.	Взаимодействие излучения с веществом 1 1			1
15.	Детекторы заряженных частиц и гамма-квантов	3 3		3
16.	Виртуальная лаборатория «Основы измерения сигналов с детекторов»	4		4
17.	Виртуальная лаборатория «Сцинтилляционный телескоп для изучения космических лучей»	4		4
18.	Виртуальная лаборатория гамма-спектроскопии	4		4
19.	Виртуальная лаборатория спонтанного деления ядер	4		4
20.	Математический практикум по обработке результатов измерений в среде ROOT	4		4
21.	Математический практикум по моделированию радиационных повреждений клетки в среде GEANT	4		4
	Итог	68		